Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isNePal(__(I, __(P, I)))) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isNePal(__(I, __(P, I)))) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

MARK(tt) → ACTIVE(tt)
__1(X1, active(X2)) → __1(X1, X2)
ISNEPAL(mark(X)) → ISNEPAL(X)
MARK(isNePal(X)) → MARK(X)
ACTIVE(__(nil, X)) → MARK(X)
ACTIVE(__(X, nil)) → MARK(X)
AND(X1, mark(X2)) → AND(X1, X2)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → ACTIVE(__(mark(X1), mark(X2)))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(__(__(X, Y), Z)) → MARK(__(X, __(Y, Z)))
MARK(and(X1, X2)) → AND(mark(X1), X2)
__1(active(X1), X2) → __1(X1, X2)
MARK(isNePal(X)) → ISNEPAL(mark(X))
ACTIVE(__(__(X, Y), Z)) → __1(X, __(Y, Z))
MARK(__(X1, X2)) → __1(mark(X1), mark(X2))
MARK(isNePal(X)) → ACTIVE(isNePal(mark(X)))
ISNEPAL(active(X)) → ISNEPAL(X)
__1(X1, mark(X2)) → __1(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
ACTIVE(__(__(X, Y), Z)) → __1(Y, Z)
ACTIVE(isNePal(__(I, __(P, I)))) → MARK(tt)
AND(active(X1), X2) → AND(X1, X2)
ACTIVE(and(tt, X)) → MARK(X)
__1(mark(X1), X2) → __1(X1, X2)
MARK(nil) → ACTIVE(nil)
MARK(__(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isNePal(__(I, __(P, I)))) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MARK(tt) → ACTIVE(tt)
__1(X1, active(X2)) → __1(X1, X2)
ISNEPAL(mark(X)) → ISNEPAL(X)
MARK(isNePal(X)) → MARK(X)
ACTIVE(__(nil, X)) → MARK(X)
ACTIVE(__(X, nil)) → MARK(X)
AND(X1, mark(X2)) → AND(X1, X2)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → ACTIVE(__(mark(X1), mark(X2)))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(__(__(X, Y), Z)) → MARK(__(X, __(Y, Z)))
MARK(and(X1, X2)) → AND(mark(X1), X2)
__1(active(X1), X2) → __1(X1, X2)
MARK(isNePal(X)) → ISNEPAL(mark(X))
ACTIVE(__(__(X, Y), Z)) → __1(X, __(Y, Z))
MARK(__(X1, X2)) → __1(mark(X1), mark(X2))
MARK(isNePal(X)) → ACTIVE(isNePal(mark(X)))
ISNEPAL(active(X)) → ISNEPAL(X)
__1(X1, mark(X2)) → __1(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
ACTIVE(__(__(X, Y), Z)) → __1(Y, Z)
ACTIVE(isNePal(__(I, __(P, I)))) → MARK(tt)
AND(active(X1), X2) → AND(X1, X2)
ACTIVE(and(tt, X)) → MARK(X)
__1(mark(X1), X2) → __1(X1, X2)
MARK(nil) → ACTIVE(nil)
MARK(__(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isNePal(__(I, __(P, I)))) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 4 SCCs with 8 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ISNEPAL(mark(X)) → ISNEPAL(X)
ISNEPAL(active(X)) → ISNEPAL(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isNePal(__(I, __(P, I)))) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ISNEPAL(mark(X)) → ISNEPAL(X)
ISNEPAL(active(X)) → ISNEPAL(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(active(x1)) = 9/4 + x_1   
POL(mark(x1)) = 1/2 + (3/2)x_1   
POL(ISNEPAL(x1)) = (1/2)x_1   
The value of delta used in the strict ordering is 1/4.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isNePal(__(I, __(P, I)))) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, mark(X2)) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isNePal(__(I, __(P, I)))) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


AND(X1, mark(X2)) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.

AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
Used ordering: Polynomial interpretation [25,35]:

POL(active(x1)) = 1/4 + (3/2)x_1   
POL(AND(x1, x2)) = (4)x_2   
POL(mark(x1)) = 4 + (4)x_1   
The value of delta used in the strict ordering is 1.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isNePal(__(I, __(P, I)))) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(active(x1)) = 9/4 + x_1   
POL(AND(x1, x2)) = (1/2)x_1   
POL(mark(x1)) = 1/2 + (3/2)x_1   
The value of delta used in the strict ordering is 1/4.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isNePal(__(I, __(P, I)))) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

__1(X1, active(X2)) → __1(X1, X2)
__1(active(X1), X2) → __1(X1, X2)
__1(X1, mark(X2)) → __1(X1, X2)
__1(mark(X1), X2) → __1(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isNePal(__(I, __(P, I)))) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


__1(active(X1), X2) → __1(X1, X2)
__1(mark(X1), X2) → __1(X1, X2)
The remaining pairs can at least be oriented weakly.

__1(X1, active(X2)) → __1(X1, X2)
__1(X1, mark(X2)) → __1(X1, X2)
Used ordering: Polynomial interpretation [25,35]:

POL(active(x1)) = 4 + (4)x_1   
POL(__1(x1, x2)) = x_1   
POL(mark(x1)) = 1/4 + (2)x_1   
The value of delta used in the strict ordering is 1/4.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

__1(X1, active(X2)) → __1(X1, X2)
__1(X1, mark(X2)) → __1(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isNePal(__(I, __(P, I)))) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


__1(X1, active(X2)) → __1(X1, X2)
__1(X1, mark(X2)) → __1(X1, X2)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(active(x1)) = 1/2 + (3/2)x_1   
POL(__1(x1, x2)) = (1/2)x_2   
POL(mark(x1)) = 9/4 + x_1   
The value of delta used in the strict ordering is 1/4.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isNePal(__(I, __(P, I)))) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(__(X1, X2)) → MARK(X1)
MARK(isNePal(X)) → MARK(X)
MARK(__(X1, X2)) → ACTIVE(__(mark(X1), mark(X2)))
MARK(and(X1, X2)) → MARK(X1)
MARK(isNePal(X)) → ACTIVE(isNePal(mark(X)))
ACTIVE(and(tt, X)) → MARK(X)
ACTIVE(__(nil, X)) → MARK(X)
ACTIVE(__(X, nil)) → MARK(X)
ACTIVE(__(__(X, Y), Z)) → MARK(__(X, __(Y, Z)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(__(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isNePal(__(I, __(P, I)))) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(isNePal(X)) → ACTIVE(isNePal(mark(X)))
The remaining pairs can at least be oriented weakly.

MARK(__(X1, X2)) → MARK(X1)
MARK(isNePal(X)) → MARK(X)
MARK(__(X1, X2)) → ACTIVE(__(mark(X1), mark(X2)))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(and(tt, X)) → MARK(X)
ACTIVE(__(nil, X)) → MARK(X)
ACTIVE(__(X, nil)) → MARK(X)
ACTIVE(__(__(X, Y), Z)) → MARK(__(X, __(Y, Z)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(__(X1, X2)) → MARK(X2)
Used ordering: Polynomial interpretation [25,35]:

POL(active(x1)) = 4   
POL(MARK(x1)) = 11/4   
POL(__(x1, x2)) = 1/4   
POL(tt) = 9/4   
POL(mark(x1)) = 0   
POL(isNePal(x1)) = 0   
POL(and(x1, x2)) = 1/4   
POL(ACTIVE(x1)) = 9/4 + (2)x_1   
POL(nil) = 0   
The value of delta used in the strict ordering is 1/2.
The following usable rules [17] were oriented:

__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
isNePal(active(X)) → isNePal(X)
isNePal(mark(X)) → isNePal(X)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → ACTIVE(__(mark(X1), mark(X2)))
MARK(isNePal(X)) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(__(__(X, Y), Z)) → MARK(__(X, __(Y, Z)))
ACTIVE(__(X, nil)) → MARK(X)
ACTIVE(__(nil, X)) → MARK(X)
ACTIVE(and(tt, X)) → MARK(X)
MARK(__(X1, X2)) → MARK(X2)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isNePal(__(I, __(P, I)))) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(isNePal(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.

MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → ACTIVE(__(mark(X1), mark(X2)))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(__(__(X, Y), Z)) → MARK(__(X, __(Y, Z)))
ACTIVE(__(X, nil)) → MARK(X)
ACTIVE(__(nil, X)) → MARK(X)
ACTIVE(and(tt, X)) → MARK(X)
MARK(__(X1, X2)) → MARK(X2)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
Used ordering: Polynomial interpretation [25,35]:

POL(active(x1)) = x_1   
POL(MARK(x1)) = 4 + (4)x_1   
POL(__(x1, x2)) = (2)x_1 + x_2   
POL(tt) = 0   
POL(mark(x1)) = x_1   
POL(isNePal(x1)) = 1 + (4)x_1   
POL(and(x1, x2)) = (4)x_1 + (4)x_2   
POL(ACTIVE(x1)) = 4 + (4)x_1   
POL(nil) = 0   
The value of delta used in the strict ordering is 4.
The following usable rules [17] were oriented:

active(isNePal(__(I, __(P, I)))) → mark(tt)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNePal(X)) → active(isNePal(mark(X)))
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(and(tt, X)) → mark(X)
mark(tt) → active(tt)
mark(nil) → active(nil)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
isNePal(active(X)) → isNePal(X)
isNePal(mark(X)) → isNePal(X)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → ACTIVE(__(mark(X1), mark(X2)))
MARK(and(X1, X2)) → MARK(X1)
ACTIVE(and(tt, X)) → MARK(X)
ACTIVE(__(nil, X)) → MARK(X)
ACTIVE(__(X, nil)) → MARK(X)
ACTIVE(__(__(X, Y), Z)) → MARK(__(X, __(Y, Z)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(__(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isNePal(__(I, __(P, I)))) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → ACTIVE(__(mark(X1), mark(X2)))
ACTIVE(and(tt, X)) → MARK(X)
ACTIVE(__(nil, X)) → MARK(X)
ACTIVE(__(X, nil)) → MARK(X)
ACTIVE(__(__(X, Y), Z)) → MARK(__(X, __(Y, Z)))
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(__(X1, X2)) → MARK(X2)
The remaining pairs can at least be oriented weakly.

MARK(and(X1, X2)) → MARK(X1)
Used ordering: Polynomial interpretation [25,35]:

POL(active(x1)) = x_1   
POL(MARK(x1)) = 1 + (4)x_1   
POL(__(x1, x2)) = 2 + (5/4)x_1 + x_2   
POL(tt) = 1   
POL(mark(x1)) = x_1   
POL(isNePal(x1)) = (1/2)x_1   
POL(and(x1, x2)) = (4)x_1 + (2)x_2   
POL(ACTIVE(x1)) = 1/4 + (4)x_1   
POL(nil) = 0   
The value of delta used in the strict ordering is 3/4.
The following usable rules [17] were oriented:

active(isNePal(__(I, __(P, I)))) → mark(tt)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNePal(X)) → active(isNePal(mark(X)))
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(and(tt, X)) → mark(X)
mark(tt) → active(tt)
mark(nil) → active(nil)
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
isNePal(active(X)) → isNePal(X)
isNePal(mark(X)) → isNePal(X)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(and(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isNePal(__(I, __(P, I)))) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(and(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(MARK(x1)) = (2)x_1   
POL(and(x1, x2)) = 1/4 + (7/2)x_1   
The value of delta used in the strict ordering is 1/2.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
                  ↳ QDP
                    ↳ QDPOrderProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isNePal(__(I, __(P, I)))) → mark(tt)
mark(__(X1, X2)) → active(__(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(tt) → active(tt)
mark(isNePal(X)) → active(isNePal(mark(X)))
__(mark(X1), X2) → __(X1, X2)
__(X1, mark(X2)) → __(X1, X2)
__(active(X1), X2) → __(X1, X2)
__(X1, active(X2)) → __(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNePal(mark(X)) → isNePal(X)
isNePal(active(X)) → isNePal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.